Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates.

نویسنده

  • T Yamashima
چکیده

Although more than 8000 papers of apoptosis are published annually, there are very few reports concerning necrosis in the past few years. A number of recent studies using lower species animals have suggested that the cornu Ammonis (CA) 1 neuronal death after brief global cerebral ischemia occurs by apoptosis, an active and genetically controlled cell suicide process. However, the studies of monkeys and humans rather support necrosis, the calpain-mediated release of lysosomal enzyme cathepsin after ischemia conceivably contributes to the cell degeneration of CA1 neurons. This paper provides an overview of recent developments in ischemic neuronal death, presents the cascade of the primate neuronal death with particular attentions to the cysteine proteases, and also indicates selective cathepsin inhibitors as a novel neuroprotectant. Furthermore, the possible interaction of calpain, cathepsin, and caspase in the cascade of ischemic neuronal death is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates.

From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of isc...

متن کامل

Calpain and caspase: can you tell the difference?

Both necrotic and apoptotic neuronal death are observed in various neurological and neurodegenerative disorders. Calpain is activated in various necrotic and apoptotic conditions, while caspase 3 is only activated in neuronal apoptosis. Despite the difference in cleavage-site specificity, an increasing number of cellular proteins are found to be dually susceptible to these cysteine proteases. T...

متن کامل

The Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos

During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...

متن کامل

Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors

Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhib...

متن کامل

Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology.

3-Nitropropionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase, has been used to model features of neurodegenerative disorders including Huntington disease, as well as acute neuronal insults such as cerebral ischemia. 3NP induces rapid necrosis and delayed apoptosis in primary cultures of rat hippocampal neurons. Low levels of extracellular glutamate shift the cell death mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 2000